
Stockham FFT acceleration with Processing-in-Memory

Byoung Jin Kim, Tae Yang Jeong, and Eui-Young Chung

School of Electrical and Electronic Engineering, Yonsei University

50 Yonsei-ro Seodaemun-gu, Seoul, Korea

E-mail: bryankim@yonsei.ac.kr, drthvbfg@yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract

Stockham, one of the most widely used FFT

algorithms, does not need reversal permutation, but

memory access patterns are unpredictable. Because

of the cache-unfriendly memory access patterns, the

performance of Stockham could be degraded.

Processing-in-Memory approach could alleviate the

memory access overhead and allow Stockham

algorithm to be accelerated. We evaluated the

effectiveness of Processing-in-Memory with Gem5

full system simulator. As a result, the maximum

performance gain was 4.22 times faster than CPU

only environment.

Keywords: Processing in Memory, Accelerator,

FFT, Stockham Algorithm

1. Introduction

Fast Fourier Transform(FFT) is used for various

fields including engineering, scientific computing,

and financial technology. There are many algorithms

for FFT, but Stockham is one of them. Stockham

iteratively performs FFT operation without reversal

permutation[1]. However, the memory access

patterns of Stockham are not sequential and hard to

predict. The performance of Stockham is related to

not only processing throughput but also memory

bandwidth.

Processing-in-Memory(PIM) is a approach which

has processing elements near memory. Recently,

there are numerous studies on PIM for accelerating

applications[2][3]. Host processor could offload

some computations into PIM-side processing

elements. The processing element of PIM does not

pass through the host processor’s cache, PIM

prevents unnecessary cache thrashing. With parallel

processing elements, PIM takes full advantage of the

memory bandwidth.

In this paper, we present a novel PIM architecture for

Stockham FFT. Our architecture is evaluated with

Gem5[4] full system simulator, and the results show

that Stockham FFT could be processed efficiently

with PIM approach.

2. Stockham FFT Algorithm

Figure 1 shows the iterate execution flow and the

memory access patterns of Stockham FFT algorithm.

In this figure, the input size of FFT is set to 8.

Increasing the input size, Stockham runs more

iterations and the memory access pattern would be

more complicated.

Figure 1. Memory access patterns of Stockham

Each iteration of Stockham could not be

parallelized, on the other hand, the operations within

an iteration could be parallelly performed. However,

it is not easy to process in parallel, because the

memory access pattern changes every iteration.

The computation of each operation consists of a

cosine function, a sine function for obtaining the real

and imaginary part from a complex number, and

multiplying between complex numbers, and some

simple arithmetic operations. These operations could

be heavy for general purpose processors.

3. PIM architecture for Stockham FFT

Proposed PIM architecture is shown in figure 2.

For processing near memory, we added some control

blocks and processing element into the conventional

memory controller.

Figure 2. Proposed PIM architecture

In this system, the main memory is PIM which

contains processing elements for accelerating

Stockham FFT. For offloading PIM computation to

PIM controller, we implemented a Linux device

driver. Driver passes PIM requests containing the

addresses of source and destination and the size of

data.

To minimize the size of the processing element,

we only parallelized a single operation within an

iteration. Cosine function and sine function, which

are the heaviest operations of Stockham algorithm,

are parallelly processed and some double-precision

floating point ALUs are added. The number of used

units for the processing element is shown in Table 1.

Table 1. The number of each unit consists of

the processing element

Cosine logic 1

Sine logic 1

Double-precision

floating point ALU

6

Integer ALU 1

4. Experiment

Our evaluation is based on Gem5 full system

simulator. We implemented the proposed PIM

architecture into the conventional DRAM controller.

Detailed simulation configuration is shown in Table

2. We assumed several configurations such as ALU

cycles.

Table 2. Simulation Environment

Host processor ARM Cortex A15 @ 1GHz

Cache L1-I/Dcache: 2-way 16KB,

DRAM DDR4-2400, 17-17-17

Double-precision

floating point ALU

cycles

4(ADD, SUB), 6(MUL),

25(DIV), 400(Sin),

420(Cos)

Integer ALU cycles 1(ADD, SUB), 3(MUL),

20(DIV)

5. Experimental results

Our experimental results are shown in Figure 3.

We evaluated the overall performance of Stockham

FFT in PIM, compared with CPU. In future work, we

plan to compare PIM against GPGPU.

Figure 3. Simulation results

With parallel processing, PIM predominates over all

input sizes. When input size is increasing, especially,

PIM performance gain increases. Because of the

more complicated memory access patterns, PIM is

more powerful in large input sizes. The result shows,

in short, 4.22x of maximum performance gain, and

2.32x of average performance gain.

6. Conclusion

In this paper, we proposed a novel PIM

architecture for Stockham FFT. Offloading FFT

computations into PIM-side, proposed PIM achieves

2.32x average performance gain against CPU. We

will further investigate PIM architecture for other

applications.

Acknowledgement

This work was supported by the Institute of

BioMed-IT, Energy-IT, and Smart-IT Technology

(BEST), a Brain Korea 21 plus program, Yonsei

University, and by the National Research Foundation

of Korea(NRF) grant funded by the Korea

government(MEST) (2016R1A2B4011799)

References

[1] D. Brandon Lloyd, Chas Boyd, Naga Govindaraju,

“Fast Computation of General Fourier Transforms on

GPUs”, IEEE International Conference on Multimedia and

Expo, Apr. 2008

[2] Paulo C. Santos, Geraldo F. Oliveria, Diego G. Tome,

Marco A. Z. Alves, Eduardo C. Almeida, Luigi Carro,

“Operand Size Reconfiguration for Big Data Processing in

Memory”, Design, Automation & Test in Europe

Conference & Exhibition(DATE), Mar. 2017

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur

Mutlu, Kiyoung Choi, “A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing”, ACM/IEEE

42nd Annual International Symposium on Computer

Architecture(ISCA), June. 2015

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.

Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.

Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood, “The Gem5 Simulator”, SIGARCH

Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011

